
PJSIP

Requirements
Document

PJSIP Requirements

ABOUT PJSIP

PJSIP is small-footprint and high-performance SIP stack written in C.

PJSIP is distributed under dual licensing schemes: GPL and commercial license.

Please visit http://www.pjproject.net for more details.

ABOUT THIS DOCUMENT

Copyright ©2005-2006 Benny Prijono

This is a free document distributed under GNU Free Documentation License version
1.2. Everyone is permitted to copy and distribute verbatim copies of this document,
but changing it is not allowed.

DOCUMENT REVISION HISTORY

Version Date Author Description

0.1 10 Sep 2005 bennylp Initial revision

PJSIP Requirements

http://www.pjproject.net/

Table of Contents
 TABLE OF CONTENTS .. 3

CHAPTER 1: GENERAL .. 5

1.1 OBJECTIVES .. 5
1.2 CODE CONVENTION ... 5

CHAPTER 2: CORE FUNCTIONS ... 7

2.1 GENERAL CORE DESIGN REQUIREMENTS .. 7
2.2 MESSAGE COMPONENTS ... 7

2.2.1 General .. 7
2.2.2 URI Design Requirements ... 7
2.2.3 URI Comparison Rules .. 8
2.2.4 Methods, Design Requirements ... 9
2.2.5 Header Fields .. 9
2.2.6 Parser .. 11
2.2.7 Message Bodies ... 11
2.2.8 UAC Generating Requests .. 11
2.2.9 UAS Generating Responses ... 12

2.3 ENDPOINT .. 12
2.4 TRANSACTIONS ... 13

2.4.1 Design Requirements ... 13
2.4.2 Client Transactions ... 13
2.4.3 Generating ACK (for 3xx-6xx Responses) .. 15
2.4.4 Server Transactions ... 15

2.5 TRANSPORTS ... 18
2.5.1 Design Requirements ... 18
2.5.2 Computing Destination of the Request .. 18
2.5.3 Behavior .. 18

2.6 RESOLVER .. 20
2.7 DIGEST AUTHENTICATION ... 21

2.7.1 Basic Case ... 21
2.7.2 Next Requests .. 21
2.7.3 Multiple Challenges .. 22
2.7.4 Open Issues ... 22

CHAPTER 3: USER AGENT/DIALOG LAYER ... 23

3.1 DESIGN REQUIREMENTS ... 23
3.2 UAC BEHAVIOR .. 23
3.3 UAS BEHAVIOR ... 26
3.4 APPLICATION CONSIDERATION ... 28

CHAPTER 4: REDIRECTION ... 29

CHAPTER 5: PROXY BEHAVIOR .. 30

5.1 REQUEST VALIDATION ... 30
5.2 ROUTE PROCESSING ... 30
5.3 CALCULATING REQUEST TARGET ... 31
5.4 REQUEST FORWARDING .. 32
5.5 PROCESSING RESPONSE .. 35
5.6 HANDLING TIMER C .. 37
5.7 TRANSPORT ERROR ... 38
5.8 PROCESSING CANCEL .. 38
5.9 STATELESS PROXY .. 38
5.10 SUMMARY OF PROXY ROUTE PROCESSING .. 39

PJSIP Requirements

CHAPTER 6: EXTENSIONS .. 41

6.1 MODELING SIP EXTENSIONS .. 41
6.2 GENERIC DESIGN REQUIREMENTS FOR SIP EXTENSIONS ... 42
6.3 100REL EXTENSION (RFC 3262) .. 43

6.3.1 UAS Behavior .. 43
6.3.2 UAC Behavior ... 44
6.3.3 Offer/Answer Model .. 44

6.4 ALTERNATIVE NETWORK ADDRESS TYPES EXTENSION (SIP-ANAT-USAGE, RFC 4092) 45
6.5 P-ASSERTED-IDENTITY PRIVATE EXTENSION (SIP-ASSERTED-IDENTITY, RFC 3325) .. 45
6.6 MEDIA AUTHORIZATION PRIVATE EXTENSION (SIP-CALL-AUTH, RFC 3313) .. 45
6.7 USER AGENT CAPABILITIES EXTENSION (SIP-CALLEE-CAPS, “PREF”, RFC 3840) .. 45
6.8 CALLER PREFERENCES EXTENSION (CALLER-PREFS, RFC 3841) ... 45
6.9 INFO METHOD EXTENSION (RFC 2976) ... 46

CHAPTER 7: MESSAGE BODY HANDLING .. 47

CHAPTER 8: MESSAGE INTEGRITY AND ENCRYPTION .. 48

CHAPTER 9: MESSAGE COMPRESSION ... 49

PJSIP Requirements

Chapter 1:General
1.1 Objectives

The objectives, based on the priority:

Item Case Description Status

1. Compliant

The library MUST be compliant to the corresponding
standards that it implements. This is the priority number one!

√

2. High Performance, Scalable, Flexible
Performance is the next highest priority. The performance
MUST be scalable to multiple processors (minimum 4).
Features that may improve (or compromise) performance
SHOULD be able to be used/excluded from the library. The
library MUST be able to utilize multithreading.

√

3. Small Footprint

The library MUST yield small footprint, sufficiently small for
use in embedded appliances. It is expected that the total
footprint of the library when all features are implemented will
be several kilobytes instead of megabytes. The core should
weight around 100KB only.

However, the desire to make the library as small as possible
MUST NOT sacrifice the design of the library. The library
MUST be kept as general purpose SIP library, not library
specifically built for small footprint devices.

√

4. Extensible, Feature Rich, Modular

The library MUST be extensible. Different kinds of extensions
(e.g. ones that work on dialog layer, message layer, or
transport layer) SHOULD be able to plug in to the library.
Initially the implementation SHOULD provide support for
several important extensions. Extensions MUST be
implemented in modular fashion. Application developer MUST
be able to select (i.e. link) to only selected extensions that
he/she wants to use.

√

5. Easy to Use with High Level API, Modular

The library SHOULD provide reasonably easy to use high-
level API. This high-level API SHOULD be implemented in
modular fashion, in higher layer library. The existence of this
high-level API MUST NOT compromise the core API.

√

1.2 Code Convention

Item Case Description Status

1. [Coding Style, The Most Important Requirement!]

Tab size=8, indentation=4 (vim: “set sts=4”)

√

PJSIP Requirements

PJSIP Requirements

Chapter 2:Core Functions

This chapter describes requirements and function checklists for functionalities in the
core library.

2.1 General Core Design Requirements

Item Case Description Status

1. MUST be able to create multiple stacks within a single
application. Multiple stacks are useful to apply different
preferences (such as different extensions selection).

√

2. MUST be multithread flexible. √

2.2 Message Components

2.2.1 General

Item Case Description Status

1. [Escapement]

MUST provide consistent escapement rules.

In general, the rule is if one component performs un-
escaping during parsing, then that component MUST escape
the characters during printing. Otherwise, the library provides
no automatic escaping functionality in both parsing and
printing the components.

The library MUST escape and un-escape URI components
automatically, except for the host part where escapement
MUST NOT be used (Ref: RFC 3261 Section 19.1.2).

2. [Special Check for SIP URL]

Just for checklist, the lexer MUST allow semicolon and plus
characters to be put in the user part of an URL.

2.2.2 URI Design Requirements

Item Case Description Status

1. MUST support SIP (sip: and sips: scheme) and tel: URI
scheme.

2. MUST have generic URI representation (e.g. for http, mailto,
etc.)

3. All URI schemes MUST share generic and common interface.

PJSIP Requirements

4. URI parsing MAY be extensible. If URI parsing is extensible,
then it MUST not cause confusion/conflict with above
requirements (e.g. if application provides http_url struct,
then given a HTTP URL, should the user use http_url or the
generic URL).

2.2.3 URI Comparison Rules

URI comparison rules, according to RFC 3261 Section 19.1.4:

Item Case Description Status

1. A SIP and SIPS URI are never equivalent.

2. Comparison of the userinfo of SIP and SIPS URIs is case-
sensitive. This includes userinfo containing passwords or
formatted as telephone-subscribers. Comparison of all other
components of the URI is case-insensitive unless explicitly
defined otherwise.

3. The ordering of parameters and header fields is not
significant in comparing SIP and SIPS URIs.

4. Characters other than those in the “reserved” set (see RFC
2396 [5]) are equivalent to their “encoding.

5. An IP address that is the result of a DNS lookup of a host
name does not match that host name.

6. For two URIs to be equal, the user, password, host, and port
components must match.

A URI omitting the user component will not match a URI that
includes one. A URI omitting the password component will
not match a URI that includes one.

A URI omitting any component with a default value will not
match a URI explicitly containing that component with its
default value. For instance, a URI omitting the optional port
component will not match a URI explicitly declaring port
5060. The same is true for the transport-parameter, ttl-
parameter, user-parameter, and method components.

7. URI uri-parameter components are compared as follows:

o Any uri-parameter appearing in both URIs must
match.

o A user, ttl, or method uri-parameter appearing in only
one URI never matches, even if it contains the default
value.

o A URI that includes an maddr parameter will not
match a URI that contains no maddr parameter.

o All other uri-parameters appearing in only one URI are
ignored when comparing the URIs.

o URI header components are never ignored. Any

PJSIP Requirements

present header component MUST be present in both
URIs and match for the URIs to match. The matching
rules are defined for each header field in RFC 3261
Section 20.

2.2.4 Methods, Design Requirements

Item Case Description Status

1. MUST provide generic representation of any methods.
Support of new methods MUST NOT require changes in the
library.

2.2.5 Header Fields

Item Case Description Status

1. MUST adhere the following header fields comparison rules:

o Field names (i.e. header names) are case insensitive

o Unless otherwise stated in the definition of a particular
header field, field values, parameter names, and
parameter values are case-insensitive.

o Tokens are always case-insensitive.

o Unless specified otherwise, values expressed as
quoted strings are case sensitive.

[RFC 3261, Section 7.3.1]

2. MUST be able to parse header field names in compact form.

3. SHOULD provide user with option to write header field names
in compact form.

4. [Record-Route]

MUST support this header field. The URI placed in the
Record-Route header field value MUST be a SIP or SIPS URI.

5. [Contact Header]

MUST support this header field.

When the header field value contains a display name, the URI
including all URI parameters is enclosed in “<” and “>”. Even
if the display-name is empty, the name-addr form MUST be
used if the addr-spec contains a comma, semicolon, or
question mark.

6. [Content-Length]

This header field MUST be implemented.

7. [Content-Type]

This header field MUST be implemented.

PJSIP Requirements

8. [Date Header]

The library SHOULD provide implementation for Date header
representation and parsing. However this implementation
MUST be able to be excluded from compilation (since not all
endpoints need this).

This implementation, if present, MUST comply with RFC 1123.

9. [From and To Header]

When the URI in From/To header is not enclosed with “<”
and “>”, all parameters belong to the header, not the URI.

10. [Max-Forwards]

The library MUST provide Max-Forwards header field.

11. [Proxy-Authenticate, Proxy-Authorization]

These header fields MUST be implemented.

12. [Proxy-Require]

This header field MUST be implemented.

13. [Record-Route]

This header field MUST be implemented.

14. [Require]

This header field MUST be implemented.

15. [Route]

This header field MUST be implemented.

16. [Supported]

This header field MUST be implemented.

17. [Timestamp]

This header field SHOULD be implemented, since UAS MUST
put a Timestamp header field in the response if that header is
present in the request, with recommendation to add delay
value.

However the implementation should be able to be excluded
from compilation.

18. [Unsupported]

This header field MUST be implemented.

19. [Via]

This header field MUST be implemented.

The implementation MUST allow LWS to be present on either
side of “/” character for the SIP version.

20. [WARNING]

This header SHOULD be implemented.

PJSIP Requirements

However the implementation should be able to be excluded
from compilation.

21. [WWW-Authenticate]

This header field MUST be implemented.

2.2.6 Parser

Item Case Description Status

1. Implementations processing SIP messages over stream-
oriented transports MUST ignore any CRLF appearing before
the start-line [RFC 3261, Section 7.5].

2.2.7 Message Bodies

This section provides core requirements from RFC 3261 for handling SIP message
bodies. Further chapters in this document deals with the specific requirements in
PJSIP for advanced message bodies handling such as compression, encryption, etc.

Item Case Description Status

1. The Internet media type of the message body MUST be given
by the Content-Type header field. [RFC 3261 Section 7.4.1]

2. If the body has undergone any encoding such as
compression, then this MUST be indicated by the Content-
Encoding header field; otherwise, Content-Encoding MUST
be omitted. [RFC 3261 Section 7.4.1]

2.2.8 UAC Generating Requests

Item Case Description Status

1. [Creating Request from URI [RFC 3261 section 19.1.5]]

An implementation MUST include any provided transport,
maddr, ttl, or user parameter in the Request-URI of the
formed request.

If the URI contains a method parameter, its value MUST be
used as the method of the request. The method parameter
MUST NOT be placed in the Request-URI.

Unknown URI parameters MUST be placed in the message’s
Request-URI.

An implementation SHOULD treat the presence of any
headers or body parts in the URI as a desire to include them
in the message, and choose to honor the request on a per-
component basis.

An implementation SHOULD NOT honor these obviously
dangerous header fields: From, Call-ID, CSeq, Via, Record-
Route, and Route, and headers that can falsely advertise its

PJSIP Requirements

location or capabilities, such as Accept, Accept-Encoding,
Accept-Language, Allow, Contact (in its dialog usage),
Organization, Supported, and User-Agent.

An implementation SHOULD verify the accuracy of any
requested descriptive header fields, including: Content-
Disposition, Content-Encoding, Content-Language, Content-
Length, Content-Type, Date, Mime-Version, and Timestamp.

2. A valid SIP request formulated by a UAC MUST, at a
minimum, contain the following header fields: To, From,
CSeq, Call-ID, Max-Forwards, and Via.

3. From header field MUST always have tag.

4. Via header MUST contain branch parameter.

5. Application (i.e. TU) SHOULD be able to provide its own
customized branch parameter (e.g. for proxy detection).

6. The Contact header MUST be present for requests that
establish dialog.

7. If the Request-URI or top Route header field value contains
a SIPS URI, the Contact header field MUST contain a SIPS
URI as well.

[Ref: RFC 3261 Section 8.1.1]

2.2.9 UAS Generating Responses

Item Case Description Status

1. These headers must be copied as is to the response: From,
To, Call-ID, CSeq, Via (maintaining the order).

2. When a 100 (Trying) response is generated, any Timestamp
header field present in the request MUST be copied into this
100 (Trying) response, adding delay value if necessary.

2.3 Endpoint

Endpoint is a term that is defined in PJSIP, for entity that manages transactions,
transports, etc.

Item Case Description Status

1. For incoming requests, the stack MUST allow application to
choose whether to handle the request in statefull or stateless
manner. This also applies for requests that belong to a
dialog.

2. UAS SHOULD process the requests in the order of the steps
that follow in section 8.2 of RFC 3261 (that is, starting with
authentication, then inspecting the method, the header fields,
and so on throughout the remainder of that section).

PJSIP Requirements

3. The stack MUST know what SIP methods it supports.

If the UAS recognizes but does not support the method of a
request, it MUST generate a 405 (Method Not Allowed)
response, along with Allow header.

4. [Merged Requests]

If the request has no tag in the To header field, the UAS core
MUST check the request against ongoing transactions. If the
From tag, Call-ID, and CSeq exactly match those associated
with an ongoing transaction, but the request does not match
that transaction (based on the matching rules in Section
17.2.3), the UAS core SHOULD generate a 482 (Loop
Detected) response and pass it to the server transaction.

5. [Stray Response]

If the response doesn't match any transactions, the response
MUST be passed to the core (whether it be stateless proxy,
stateful proxy, or UA) for further processing. Handling of
these “stray” responses is dependent on the core (a proxy
will forward them, while a UA will discard, for example).
[Section 18.1.2]

2.4 Transactions

2.4.1 Design Requirements

Item Case Description Status

1. Transaction API MUST be generic so it can be used by both
user agents and proxies.

2.4.2 Client Transactions

Ref: RFC 3261 Section 17.1

Item Case Description Status

1. UA starts the transaction by passing up the SIP request
message and IP address, port, and transport to send the
message.

2. MUST have mechanism to insert own generated branch
parameter (example: for proxy loop detection).

3. MUST have configurable timer values.

4. MUST NOT retransmit request for reliable transports.

5. [Non INVITE] After sending request, the client transaction
SHOULD set timeout timer to fire in 64*T1 seconds.

6. [For INVITE] The retransmission timer doubles every
transmission, and doesn’t cap off.

[Non INVITE] Requests are retransmitted at an interval which

PJSIP Requirements

starts at T1 and doubles until it hits T2.

7. [Matching Response to Client Transaction]

Response is matched to a client transaction if:

o The response has the same value of the branch
parameter in the top Via header field as the branch
parameter in the top Via header field of the request
that created the transaction.

o The method parameter in the CSeq header field
matches the method of the request that created the
transaction. The method is needed since a CANCEL
request constitutes a different transaction, but shares
the same value of the branch parameter.

8. [For INVITE] The provisional response MUST be passed to the
TU. Any further provisional responses MUST be passed up to
the TU while in the “Proceeding” state.

[Non INVITE] If a provisional response is received,
retransmissions continue for unreliable transports, but at an
interval of T2 (The server transaction retransmits the last
response it sent, which can be a provisional or final response,
only when a retransmission of the request is received).

9. [For INVITE] Upon receiving 300-699 response, MUST pass
the received response up to the TU, and MUST generate an
ACK request.

The ACK MUST be sent to the same address, port, and
transport to which the original request was sent.

10. [For INVITE] The client transaction SHOULD start timer D
when it enters the “Completed” state, with a value of at least
32 seconds for unreliable transports, and a value of zero
seconds for reliable transports.

[Non INVITE] Once the client transaction enters the
“Completed” state, it MUST set Timer K to fire in 5 seconds
(T4) for unreliable transports, and zero seconds for reliable
transports.

11. [For INVITE] Any retransmissions of the final response that
are received while in the “Completed” state MUST cause the
ACK to be re-passed to the transport layer for retransmission.

12. [For INVITE] Reception of a 2xx response MUST cause the
client transaction to enter the “Terminated” state, and the
response MUST be passed up to the TU.

13. [Transport Error]

When there is an error in sending the request, the client
transaction SHOULD inform the TU that a transport failure
has occurred, and the client transaction SHOULD transition
directly to the “Terminated” state. The TU will handle the
failover mechanisms described in [4].

PJSIP Requirements

2.4.3 Generating ACK (for 3xx-6xx Responses)

Ref: RFC 3261 Section 17.1.1

Item Case Description Status

1. Header fields Call-ID, From, and Request-URI MUST be equal
to the original INVITE request.

2. The To header field in the ACK MUST equal the To header
field in the response being acknowledged (including tag).

3. The ACK MUST contain a single Via header field, and this
MUST be equal to the top Via header field of the original
request.

4. The CSeq header field in the ACK MUST contain the same
value for the sequence number as was present in the original
request, but the method parameter MUST be equal to “ACK”.

5. If the INVITE request whose response is being acknowledged
had Route header fields, those header fields MUST appear in
the ACK.

6. [Message Body]

Although any request MAY contain a body, a body in an ACK
is special since the request cannot be rejected if the body is
not understood. Therefore, placement of bodies in ACK for
non-2xx is NOT RECOMMENDED , but if done, the body types
are restricted to any that appeared in the INVITE, assuming
that the response to the INVITE was not 415. If it was, the
body in the ACK MAY be any type listed in the Accept header
field in the 415.

2.4.4 Server Transactions

Ref: RFC 3261 Section 17.2

Item Case Description Status

1. [Matching Requests for Server Transactions]

If it is present and begins with the magic cookie “z9hG4bK”,
the request matches a transaction if:

o The branch parameter in the request is equal to the
one in the top Via header field of the request that
created the transaction, and

o The sent-by value in the top Via of the request is
equal to the one in the request that created the
transaction, and

o The method of the request matches the one that

PJSIP Requirements

created the transaction, except for ACK, where the
method of the request that created the transaction is
INVITE.

If the magic cookie is not present, the following rules are
used.

o The INVITE request matches a transaction if the
Request-URI, To tag, From tag, Call-ID, CSeq, and top
Via header field match those of the INVITE request
which created the transaction.

o The ACK request matches a transaction if the
Request-URI, From tag, Call-ID, CSeq number (not
the method), and top Via header field match those of
the INVITE request which created the transaction, and
the To tag of the ACK matches the To tag of the
response sent by the server transaction.

o An ACK request that matches an INVITE transaction
matched by a previous ACK is considered a
retransmission of that previous ACK.

o For all other request methods, a request is matched to
a transaction if the Request-URI, To tag, From tag,
Call-ID, CSeq (including the method), and top Via
header field match those of the request that created
the transaction.

2. [For INVITE] MUST NOT retransmit 2xx response for reliable
transports.

3. [Provisional Response]

[For INVITE] The server transaction MUST generate a 100
(Trying) response unless it knows that the TU will generate a
provisional or final response within 200 ms, in which case it
MAY generate a 100 (Trying) response.

[Non INVITE]

A SIP element MUST NOT send any provisional response with
a Status-Code other than 100 to a non-INVITE request.

A SIP element MUST NOT respond to a non-INVITE request
with a Status-Code of 100 over any unreliable transport, such
as UDP, before the amount of time it takes a client
transaction's Timer E to be reset to T2.

A SIP element MAY respond to a non-INVITE request with a
Status-Code of 100 over a reliable transport at any time.

Without regard to transport, a SIP element MUST respond to
a non-INVITE request with a Status-Code of 100 if it has not
otherwise responded after the amount of time it takes a
client transaction's Timer E to be reset to T2.

A transaction-stateful SIP element MUST NOT send a
response with Status-Code of 408 to a non-INVITE request.

PJSIP Requirements

As a consequence, an element that can not respond before
the transaction expires will not send a final response at all.

[draft-sparks-sip-nit-actions-03]

4. If a request retransmission is received while in the
“Proceeding” state, the most recent provisional response that
was received from the TU MUST be passed to the transport
layer for retransmission.

5. [2xx Response for INVITE]

If, while in the “Proceeding” state, the TU passes a 2xx
response to the server transaction, the server transaction
MUST pass this response to the transport layer for
transmission. It is not retransmitted by the server
transaction; retransmissions of 2xx responses are handled by
the TU. The server transaction MUST then transition to the
“Terminated” state.

6. [2xx Response to INVITE]

After 2xx response is passed to UAS transaction, the
transaction MUST NOT be destroyed immediately, but instead
must be kept in “lingering” state where it would pass INVITE
request retransmission to UA layer.

(If the UAS transaction is destroyed immediately, incoming
INVITE request retransmission will cause the core to recreate
the UAS transaction).

7. [300-699 Response for INVITE]

While in the “Proceeding” state, if the TU passes a response
with status code from 300 to 699 to the server transaction,
the response MUST be passed to the transport layer for
transmission, and the state machine MUST enter the
“Completed” state. For unreliable transports, retransmission
timer (timer G) is set to fire in T1 seconds, and is not set to
fire for reliable transports.

Timer G caps on T2 seconds.

[All Final Responses for Non INVITE] If the TU passes a final
response (status codes 200-699) to the server while in the
“Proceeding” state, the transaction MUST enter the
“Completed” state, and the response MUST be passed to the
transport layer for transmission.

8. [For INVITE] When the “Completed” state is entered, timer H
(timeout timer) MUST be set to fire in 64*T1 seconds for all
transports.

[Non INVITE] When the server transaction enters the
“Completed” state, it MUST set Timer J to fire in 64*T1
seconds for unreliable transports, and zero seconds for
reliable transports. Any other final responses passed by the
TU to the server transaction MUST be discarded while in the
“Completed” state.

PJSIP Requirements

9. [For INVITE] If an ACK is received while the server
transaction is in the “Completed” state, the server transaction
MUST transition to the “Confirmed” state.

10. [For INVITE] If the ACK was never received, the server
transaction MUST transition to the “Terminated” state, and
MUST indicate to the TU that a transaction failure has
occurred.

11. [Transport Error]

The procedures in [RFC 3263] are followed, which attempt to
deliver the response to a backup. If those should all fail,
based on the definition of failure in [RFC 3263], the server
transaction SHOULD inform the TU that a failure has
occurred, and SHOULD transition to the terminated state.

2.5 Transports

Reference:

o RFC 3261 (SIP)

o RFC 3581 (rport extension)

2.5.1 Design Requirements

Item Case Description Status

1. MUST provide mechanism to add new types of transports.

2. MUST provide hook to plug certain type of process for each
outgoing/incoming packets/messages. This hook mechanism
is used for extensions that work on message level, such as
SigComp.

3. MUST be able to support Ipv6, and this support MUST be
configurable (e.g. can be excluded from compilation).

4. MUST be able to support TLS (configurable).

2.5.2 Computing Destination of the Request

Item Case Description Status

1. MUST follow the rules in Section 8.1.2 of RFC 3261.

2.5.3 Behavior

Item Case Description Status

1. [Large Request]

PJSIP Requirements

If a request is within 200 bytes of the path MTU, or if it is
larger than 1300 bytes and the path MTU is unknown, the
request MUST be sent using an RFC 2914 [36] congestion
controlled transport protocol, such as TCP.

If this causes a change in the transport protocol from the one
indicated in the top Via, the value in the top Via MUST be
changed.

If this attempt (and only for this cause) to establish the
connection generates either an ICMP Protocol Not Supported,
or results in a TCP reset, the element SHOULD retry the
request, using UDP (for backward compatibility).

2. [Multicast]

A client that sends a request to a multicast address MUST
add the maddr parameter to its Via header field value
containing the destination multicast address, and for IPv4,
SHOULD add the ttl parameter with a value of 1.

3. [UDP Response Address]

Server chooses the address to send response:

o From the host part in Via sent-by if received
parameter is not present.

o From source address of the request if received
parameter is present.

4. [UDP Response Port]

Server chooses the port number to send response:

o From the port in Via sent-by if rport parameter is not
present.

o From source port of the request if rport parameter is
present.

5. Transport layer adds received and rport parameter for each
outbound request [ref:3261,3581].

6. Transport layer MUST fill the received parameter for each
incoming requests.

7. Transport layer MUST fill in the rport parameter for each
outgoing requests.

8. [Receiving Response]

If the value of the sent-by parameter in that header field
value does not correspond to a value that the client transport
is configured to insert into requests, the response MUST be
silently discarded. [Section 18.1.2]

9. For backward compatibility, transport MUST still be prepared
to receive responses from the address as advertised in Via
sent-by. [ref:3581]

PJSIP Requirements

10. [Stray Response]

If the response doesn't match any transactions, the response
MUST be passed to the core (whether it be stateless proxy,
stateful proxy, or UA) for further processing. Handling of
these “stray” responses is dependent on the core (a proxy
will forward them, while a UA will discard, for example).
[Section 18.1.2]

11. [TCP]

Server must send response using existing connection.

12. [TCP]

Section 18.2.2:

For server, when existing connection has closed, it SHOULD
open a new connection to the address in received
parameter, using the port in sent-by if present or default
port.

13. [TCP]

Section 18.2.2:

If above procedure fails, server SHOULD use procedure in
RFC 3263 to open new connection to send response to.

14. [TCP]

Section 17.2.4:

If above procedure fails, transaction should inform TU that a
failure has occurred, and progress the state to terminated.

15. [Invalid Message]

If the message is response, it MUST be discarded.

If the message is request, the element SHOULD generate 400
(Bad Request) response.

16. [ICMP Errors for Unreliable Transports]

Host, network, port or protocol unreachable errors, or
parameter problem errors SHOULD cause the transport layer
to inform the transport user of a failure in sending. Source
quench and TTL exceeded ICMP errors SHOULD be ignored.

2.6 Resolver

Resolver is the element who resolves the destination host/port based on the rule set
in RFC 3263. The table below outlines the requirements for this element.

Item Case Description Status

1. The resolver MUST provide mechanism to be used by any
elements in the stack (e.g. transactions, user agents,
proxies, etc.)

PJSIP Requirements

2.7 Digest Authentication

2.7.1 Basic Case

Item Case Description Status

1. When no credential is supplied, forward all authorization
failures to application.

2. Responding to digest authentication with qop=none

3. [PJSIP_AUTH_QOP_SUPPORT==1]

Responding to digest authentication with qop=”auth,auth-
int”

4. [PJSIP_AUTH_QOP_SUPPORT==0]

Report authentication failure to application when
qop=”auth,auth-int” is requested.

5. Report authentication failure when:

- scheme is not supported

- digest algorithm is not supported

2.7.2 Next Requests

Item Case Description Status

1. [PJSIP_AUTH_AUTO_SEND_NEXT==0]

New requests MUST NOT have any Authorization headers.

2. [PJSIP_AUTH_AUTO_SEND_NEXT==1]

When qop=none, if next request has different method, send
brand new Authorization header.

3. [PJSIP_AUTH_AUTO_SEND_NEXT==1]

When qop=auth, always send fresh Authorization header.
No header should be put in the cache.

4. [PJSIP_AUTH_HEADER_CACHING==1]

When qop=none, if endpoint has sent request with the same
method, resent cached authorization header.

5. When received 401/407 with stale=1, recalculate new
Authorization header with the new nonce.

6. When received 401/407 with stale=0, inform user about
authorization failure.

PJSIP Requirements

2.7.3 Multiple Challenges

Item Case Description Status

1. When multiple WWW-Authenticate/Proxy-Authenticate
headers are present (with different realm), client should
respond to each of them automatically (as long as they have
the credential)

2. When authorization failed with new challenge from
downstream proxy and client retries new request, the stack
should include all Authorization headers sent in the previous
request.

2.7.4 Open Issues

Item Case Description Status

1. When one server sends multiple WWW-Authenticate with
different algorithm, client should select one with the highest
level of encryption that it supports.

N/A

PJSIP Requirements

Chapter 3:User Agent/Dialog Layer
References:

o RFC 3261

o RFC 3515 (REFER)

o RFC 3265 (events)

3.1 Design Requirements

Item Case Description Status

1. Must be able to handle forking.

2. Dialog can be created by several methods (e.g. INVITE,
SUBSCRIBE, REFER).

3. Extensible; future methods may create dialog.

4. Feature extensible; extensions can be plugged in to the
dialog framework (e.g. PRACK) along with their
Supported/Require header flag indication.

5. Multiple API level: basic, low level API which common for all
kind of dialog usage, and higher level API for manipulating
feature specific extension.

6. Different API should provide different callbacks too, which are
specific to the features.

7. Extensions can work together on a single dialog (e.g. event
subscription inside a dialog created by INVITE).

3.2 UAC Behavior

Item Case Description Status

1. MUST provide a SIP or SIPS URI with global scope in the
Contact header field of the request.

2. If the request has a Request-URI or a topmost Route header
field value with a SIPS URI, the Contact header field MUST
contain a SIPS URI.

3. If the request was sent over TLS, and the Request-URI
contained a SIPS URI, the “secure” flag is set to TRUE.

4. The route set MUST be set to the list of URIs in the Record-
Route header field from the response, taken in reverse order
and preserving all URI parameters. If no Record-Route
header field is present in the response, the route set MUST
be set to the empty set. This route set, even if empty,
overrides any pre-existing route set for future requests in this
dialog.

PJSIP Requirements

5. The remote target MUST be set to the URI from the Contact
header field of the response.

6. The local sequence number MUST be set to the value of the
sequence number in the CSeq header field of the request.
The remote sequence number MUST be empty (it is
established when the remote UA sends a request within the
dialog).

7. The call identifier component of the dialog ID MUST be set to
the value of the Call-ID in the request.

8. The local tag component of the dialog ID MUST be set to the
tag in the From field in the request, and the remote tag
component of the dialog ID MUST be set to the tag in the To
field of the response. A UAC MUST be prepared to receive a
response without a tag in the To field, in which case the tag
is considered to have a value of null.

9. The remote URI MUST be set to the URI in the To field, and
the local URI MUST be set to the URI in the From field.

10. Requests within a dialog MAY contain Record-Route and
Contact header fields. However, these requests do not cause
the dialog’s route set to be modified, although they may
modify the remote target URI. Specifically, requests that are
not target refresh requests do not modify the dialog’s remote
target URI, and requests that are target refresh requests do.
Target refresh requests only update the dialog’s remote
target URI, and not the route set formed from the Record-
Route.

11. If the route set is not empty, and the first URI in the route
set contains the lr parameter (see Section 19.1.1), the UAC
MUST place the remote target URI into the Request-URI and
MUST include a Route header field containing the route set
values in order, including all parameters.

12. If the route set is not empty, and its first URI does not
contain the lr parameter, the UAC MUST place the first URI
from the route set into the Request-URI, stripping any
parameters that are not allowed in a Request-URI. The UAC
MUST add a Route header field containing the remainder of
the route set values in order, including all parameters. The
UAC MUST then place the remote target URI into the Route
header field as the last value.

13. A UAC SHOULD include a Contact header field in any target
refresh requests within a dialog, and unless there is a need to
change it, the URI SHOULD be the same as used in previous
requests within the dialog. If the “secure” flag is true, that
URI MUST be a SIPS URI.

14. When a UAC receives a 2xx response to a target refresh
request, it MUST replace the dialog’s remote target URI with
the URI from the Contact header field in that response, if

PJSIP Requirements

present.

15. MUST NOT send CANCEL before receiving provisional
response. The transmission of CANCEL request MAY be
delayed until provisional response is received.

16. UAC canceling a request cannot rely on receiving a 487
(Request Terminated) response for the original request, as an
RFC 2543-compliant UAS will not generate such a response.
If there is no final response for the original request in 64*T1
seconds (T1 is defined in Section 17.1.1), the client SHOULD
then consider the original transaction cancelled and SHOULD
destroy the client transaction handling the original request.

17. If the response for a request within a dialog is a 481
(Call/Transaction Does Not Exist) or a 408 (Request
Timeout), the UAC SHOULD terminate the dialog. A UAC
SHOULD also terminate a dialog if no response at all is
received for the request (the client transaction would inform
the TU about the timeout.)

18. Independent of the method, if a request outside of a dialog
generates a non-2xx final response, any early dialogs created
through provisional responses to that request are terminated.

19. When Expires header is present, UAC core SHOULD generate
CANCEL after the timeout expires [Ref: RFC 3261 Section
13.2.1].

20. ACK MUST be sent to the new target URI (the one in Contact
header in 2xx response to INVITE). RFC 3261 says that the
request is passed to the transport layer directly for
transmission, rather than a client transaction.

21. UAC MUST NOT initiate a new INVITE transaction within a
dialog while another INVITE transaction is in progress in
either direction.

22. UA MAY initiate a regular transaction while an INVITE
transaction is in progress. A UA MAY also initiate an INVITE
transaction while a regular transaction is in progress.

23. If a UAC receives a 491 (Request Pending, or glare) response
to a re-INVITE, it SHOULD start a timer with a value T chosen
as follows:

o If the UAC is the owner of the Call-ID of the dialog ID
(meaning it generated the value), T has a randomly
chosen value between 2.1 and 4 seconds in units of 10
ms.

o If the UAC is not the owner of the Call-ID of the dialog
ID, T has a randomly chosen value of between 0 and 2
seconds in units of 10 ms.

24. The UAC MUST consider the session terminated (and
therefore stop sending or listening for media) as soon as the
BYE request is passed to the client transaction. If the

PJSIP Requirements

response for the BYE is a 481 (Call/Transaction Does Not
Exist) or a 408 (Request Timeout) or no response at all is
received for the BYE (that is, a timeout is returned by the
client transaction), the UAC MUST consider the session and
the dialog terminated [Section 15.1.1].

25. Endpoints MUST NOT use a URI obtained from a Record-
Route header field outside the dialog in which it was
provided.

[Ref: RFC 3261 Chapter 12]

3.3 UAS Behavior

Item Case Description Status

1. When responding to a request with a response that
establishes a dialog (such as a 2xx to INVITE), the UAS MUST
copy exactly all Record-Route header field values from the
request into the response and MUST maintain the order of
those values.

The UAS MUST add a Contact header field to the response.
The URI provided in the Contact header field MUST be a SIP
or SIPS URI. If the request that initiated the dialog contained
a SIPS URI in the Request-URI or in the top Record-Route
header field value, if there was any, or the Contact header
field if there was no Record-Route header field, the Contact
header field in the response MUST be a SIPS URI.

The URI SHOULD have global scope (that is, the same URI
can be used in messages outside this dialog).

[Ref: RFC 3261 Section 21.1.1]

2. If the request arrived over TLS, and the Request-URI
contained a SIPS URI, the “secure” flag is set to TRUE.

3. The route set MUST be set to the list of URIs in the Record-
Route header field from the request, taken in order and
preserving all URI parameters. If no Record-Route header
field is present in the request, the route set MUST be set to
the empty set. This route set, even if empty, overrides any
pre-existing route set for future requests in this dialog.

4. The remote target MUST be set to the URI from the Contact
header field of the request.

5. The remote URI MUST be set to the URI in the From field,
and the local URI MUST be set to the URI in the To field.

6. The remote sequence number MUST be set to the value of
the sequence number in the CSeq header field of the request.
The local sequence number MUST be empty.

7. The call identifier component of the dialog ID MUST be set to

PJSIP Requirements

the value of the Call-ID in the request.

8. The local tag component of the dialog ID MUST be set to the
tag in the To field in the response to the request (which
always includes a tag), and the remote tag component of the
dialog ID MUST be set to the tag from the From field in the
request. A UAS MUST be prepared to receive a request
without a tag in the From field, in which case the tag is
considered to have a value of null.

9. UAS MUST adhere to Expire header field. If the invitation
expires before the UAS has generated a final response, a 487
(Request Terminated) response SHOULD be generated.

10. Dialog must retransmit provisional response at least every 1
minute, to ask for an “extension” in order to prevent proxies
from canceling the transaction. A proxy has the option of
canceling a transaction when there is a gap of 3 minutes
between responses in a transaction.

11. Contact header field in a target refresh request updates the
remote target URI.

12. If the remote sequence number was not empty, but the
sequence number of the request is lower than the remote
sequence number, the request is out of order and MUST be
rejected with a 500 (Server Internal Error) response.

13. It is possible for the CSeq sequence number to be higher
than the remote sequence number by more than one. This is
not an error condition, and a UAS SHOULD be prepared to
receive and process requests with CSeq values more than
one higher than the previous received request. The UAS
MUST then set the remote sequence number to the value of
the sequence number in the CSeq header field value in the
request (e.g. proxy challenged previous request).

14. When a UAS receives a target refresh request, it MUST
replace the dialog’s remote target URI with the URI from the
Contact header field in that request, if present.

15. A UAS rejecting an offer contained in an INVITE SHOULD
return a 488 (Not Acceptable Here) response. Such a
response SHOULD include a Warning header field value
explaining why the offer was rejected.

16. Redirect response SHOULD contain a Contact header field
containing one or more URIs of new addresses to be tried.

17. The INVITE server transaction will be destroyed as soon as it
receives 2xx final response and passes it to the transport.
Therefore, it is necessary to periodically pass the response
directly to the transport until the ACK arrives. This is done
even with reliable transport.

18. When no ACK is received after 61*T1 seconds, the session
SHOULD be terminated by sending BYE.

PJSIP Requirements

19. A UAS that receives a second INVITE before it sends the final
response to a first INVITE with a lower CSeq sequence
number on the same dialog MUST return a 500 (Server
Internal Error) response to the second INVITE and MUST
include a Retry-After header field with a randomly chosen
value of between 0 and 10 seconds [Section 14.2].

20. A UAS that receives an INVITE on a dialog while an INVITE it
had sent on that dialog is in progress MUST return a 491
(Request Pending) response to the received INVITE [Section
14.2].

21. If a UA receives a re-INVITE for an existing dialog, it MUST
check any version identifiers in the session description or, if
there are no version identifiers, the content of the session
description to see if it has changed. If the session description
has changed, the UAS MUST adjust the session parameters
accordingly, possibly after asking the user for confirmation
[Section 14.2].

22. For Re-INVITE, if a UAS generates a 2xx response and never
receives an ACK, it SHOULD generate a BYE to terminate the
dialog [Section 14.2].

23. If the BYE does not match an existing dialog, the UAS core
SHOULD generate a 481 (Call/Transaction Does Not Exist)
response and pass that to the server transaction [Section
15.1.2].

24. After receiving BYE, UAS MUST still respond to any pending
requests received for that dialog. It is RECOMMENDED that a
487 (Request Terminated) response be generated to those
pending requests [Section 15.1.2].

[Ref: RFC 3261 Chapter 12]

3.4 Application Consideration

Item Case Description Status

1. [Receiving INVITE]

Application SHOULD check incoming INVITE for the same
Call-Id with existing dialogs. It should be able to detect
forking INVITE requests.

PJSIP Requirements

Chapter 4:Redirection
The core stack provides auxiliary API for processing redirection (3xx response).
Below are the requirements for such API, following the rules in RFC 3261 Section
8.1.3.

Item Case Description Status

1. Use the URI(s) in the Contact header field to formulate one or
more new requests based on the redirected request.

2. MUST NOT add any given URI to the target set more than
once.

3. If the original request had a SIPS URI in the Request-URI,
the client MAY choose to recurse to a non-SIPS URI, but
SHOULD inform the user of the redirection to an insecure
URI.

4. MAY reorder the Contacts by the q value.

PJSIP Requirements

Chapter 5:Proxy Behavior
5.1 Request Validation

Item Case Description Status

1. Any components that are NOT required by proxy processing
logic, well-formed or not, SHOULD be ignored and remain
unchanged when the message is forwarded. For instance, an
element would not reject a request because of a malformed
Date header field. Likewise, a proxy would not remove a
malformed Date header field before forwarding a request.

2. If the Request-URI has a URI whose scheme is not
understood by the proxy, the proxy SHOULD reject the
request with a 416 (Unsupported URI Scheme) response.

3. If the request does not contain a Max-Forwards header
field, this check is passed. If the request contains a Max-
Forwards header field with a field value greater than zero,
the check is passed. If the request contains a Max-Forwards
header field with a field value of zero (0), the element MUST
NOT forward the request. If the request was for OPTIONS,
the element MAY act as the final recipient and respond the
request. Otherwise, the element MUST return a 483 (Too
many hops) response.

4. An element MAY check for forwarding loops before forwarding
a request.

5. If the request contains a Proxy-Require header field with
one or more option-tags this element does not understand,
the element MUST return a 420 (Bad Extension) response.
The response MUST include an Unsupported header field
listing those option-tags the element did not understand.

6. If an element requires credentials before forwarding a
request, the request MUST be inspected.

[Ref: RFC 3261 Section 16.3]

5.2 Route Processing

Item Case Description Status

1. The proxy MUST inspect the Request-URI of the request. If
the Request-URI of the request contains a value this proxy
previously placed into a Record-Route header field (see
Section 16.6 item 4), the proxy MUST replace the Request-
URI in the request with the last value from the Route header
field, and remove that value from the Route header field. The
proxy MUST then proceed as if it received this modified
request.

PJSIP Requirements

2. If the Request-URI contains a maddr parameter, the proxy
MUST check to see if its value is in the set of addresses or
domains the proxy is configured to be responsible for. If the
Request-URI has a maddr parameter with a value the proxy
is responsible for, and the request was received using the
port and transport indicated (explicitly or by default) in the
Request-URI, the proxy MUST strip the maddr and any non-
default port or transport parameter and continue processing
as if those values had not been present in the request.

A request may arrive with a maddr matching the proxy, but
on a port or transport different from that indicated in the
URI. Such a request needs to be forwarded to the proxy
using the indicated port and transport.

3. If the first value in the Route header field indicates this
proxy, the proxy MUST remove that value from the request.

[Ref: RFC 3261 Section 16.4]

5.3 Calculating Request Target

Item Case Description Status

1. If the Request-URI of the request contains an maddr
parameter, the Request-URI MUST be placed into the target
set as the only target URI, and the proxy MUST begin
forwarding the request.

2. If the domain of the Request-URI indicates a domain this
element is not responsible for, the Request-URI MUST be
placed into the target set as the only target, and the element
MUST proceed to the task of Request Forwarding

3. If the Request-URI does not provide sufficient information for
the proxy to determine the target set, it SHOULD return a
485 (Ambiguous) response. This response SHOULD contain a
Contact header field containing URIs of new addresses to be
tried.

4. A proxy MUST NOT add additional targets to the target set if
the Request-URI of the original request does not indicate a
resource this proxy is responsible for.

5. If the Request-URI indicates a resource at this proxy that
does not exist, the proxy MUST return a 404 (Not Found)
response.

6. If the target set remains empty after applying all of the
above, the proxy MUST return an error response, which
SHOULD be the 480 (Temporarily Unavailable) response.

[Ref: RFC 3261 Section 16.5]

PJSIP Requirements

5.4 Request Forwarding

Item Case Description Status

1. A stateful proxy must have a mechanism to maintain the
target set as responses are received and associate the
responses to each forwarded request with the original
request. For the purposes of this model, this mechanism is a
“response context” created by the proxy layer before
forwarding the first request.

2. For each target, the proxy forwards the request following
these steps:

1. Make a copy of the received request

2. Update the Request-URI

3. Update the Max-Forwards header field (if the copy
does not contain a Max-Forwards header field, the
proxy MUST add one with a field value, which SHOULD
be 70).

4. Optionally add a Record-route header field value

5. Optionally add additional header fields

6. Post-process routing information

7. Determine the next-hop address, port, and transport

8. Add a Via header field value

9. Add a Content-Length header field if necessary

10. Forward the new request

11.Set timer C

3. [Copying the Request]

The copy MUST initially contain all of the header fields from
the received request. Fields not detailed in the processing
described below MUST NOT be removed. The copy SHOULD
maintain the ordering of the header fields as in the received
request. The proxy MUST NOT reorder field values with a
common field name.

4. [Request-URI]

The Request-URI in the copy’s start line MUST be replaced
with the URI for this target. If the URI contains any
parameters not allowed in a Request-URI, they MUST be
removed.

5. [Max-Forwards]

If the copy contains a Max-Forwards header field, the proxy
MUST decrement its value by one (1). If the copy does not
contain a Max-Forwards header field, the proxy MUST add
one with a field value, which SHOULD be 70.

PJSIP Requirements

6. [Record-Route]

If this proxy wishes to remain on the path of future requests
in a dialog created by this request (assuming the request
creates a dialog), it MUST insert a Record-Route header field
value into the copy before any existing Record-Route header
field values, even if a Route header field is already present.

7. [Record-Route]

If this request is already part of a dialog, the proxy SHOULD
insert a Record-Route header field value if it wishes to remain
on the path of future requests in the dialog. In normal
endpoint operation as described in Section 12, these Record-
Route header field values will not have any effect on the
route sets used by the endpoints.

A proxy MAY insert a Record-Route header field value into
any request.

The URI placed in the Record-Route header field value MUST
be a SIP or SIPS URI. This URI MUST contain an lr
parameter. The URI SHOULD NOT contain the transport
parameter unless the proxy has knowledge (such as in a
private network) that the next downstream element that will
be in the path of subsequent requests supports that
transport.

If the Request-URI contains a SIPS URI, or the topmost
Route header field value (after the post processing of Route
headers) contains a SIPS URI, the URI placed into the
Record-Route header field MUST be a SIPS URI.

Furthermore, if the request was not received over TLS, the
proxy MUST insert a Record-Route header field.

In a similar fashion, a proxy that receives a request over TLS,
but generates a request without a SIPS URI in the Request-
URI or topmost Route header field value (after the post
processing of Route header), MUST insert a Record-Route
header field that is not a SIPS URI.

A proxy at a security perimeter must remain on the perimeter
throughout the dialog.

If the URI placed in the Record-Route header field needs to
be rewritten when it passes back through in a response, the
URI MUST be distinct enough to locate at that time. (The
request may spiral through this proxy, resulting in more than
one Record-Route header field value being added).

The proxy MAY include parameters in the Record-Route
header field value. These will be echoed in some responses to
the request such as the 200 (OK) responses to INVITE. Such
parameters may be useful for keeping state in the message
rather than the proxy.

If a proxy needs to be in the path of any type of dialog (such
as one straddling a firewall), it SHOULD add a Record-Route

PJSIP Requirements

header field value to every request with a method it does not
understand since that method may have dialog semantics.

8. [Route]

A proxy MAY have a local policy that mandates that a request
visit a specific set of proxies before being delivered to the
destination. This set MUST be pushed into the Route header
field of the copy ahead of any existing values, if present. If
the Route header field is absent, it MUST be added,
containing that list of URIs.

A proxy MUST ensure that all such proxies are loose routers.

Furthermore, if the Request-URI contains a SIPS URI, TLS
MUST be used to communicate with that proxy.

9. [Route]

If the copy contains a Route header field, the proxy MUST
inspect the URI in its first value. If that URI does not contain
an lr parameter, the proxy MUST modify the copy as follows:

o The proxy MUST place the Request-URI into the Route
header field as the last value.

o The proxy MUST then place the first Route header field
value into the Request-URI and remove that value
from the Route header field.

10. [Determine Next-Hop Address, Port, and Transport]

The proxy applies the procedures listed in [RFC 3263:
Locating SIP Servers] as follows to determine where to send
the request.

11. [Add a Via header field value]

MAY add customized branch parameter if the proxy wants to
perform loop detection. A proxy choosing to detect loops
SHOULD create a branch parameter separable into two parts
by the implementation.

12. [Add a Content-Length header field if necessary]

If the request will be sent to the next hop using a stream-
based transport and the copy contains no Content-Length
header field, the proxy MUST insert one with the correct
value for the body of the request

13. Forward request to each target. For each target, a new client
transaction is created (for stateful proxy).

14. [Start Timer C]

In order to handle the case where an INVITE request never
generates a final response, the TU uses a timer which is
called timer C. Timer C MUST be set for each client
transaction when an INVITE request is proxied. The timer
MUST be larger than 3 minutes.

PJSIP Requirements

[Ref: RFC 3261 Section 16.6]

5.5 Processing Response

Item Case Description Status

1. When a response is received by an element, it first tries to
locate a client transaction matching the response. If none is
found, the element MUST process the response (even if it is
an informational response) as a stateless proxy.

2. A transaction-stateful SIP proxy MUST NOT send any
response to a non-INVITE request unless it has a matching
server transaction that is not in the Terminated state. As a
consequence, this proxy will not forward any "late" non-
INVITE response [draft-sparks-sip-nit-actions-03.txt].

3. [Processing by Client Transaction]

As client transactions pass responses to the proxy layer, the
following processing MUST take place:

o Find the appropriate response context

o Update timer C for provisional responses

o Remove the topmost Via

o Add the response to the response context

o Check to see if this response should be forwarded
immediately

o When necessary, choose the best final response from
the response context. If no final response has been
forwarded after every client transaction associated
with the response context has been terminated, the
proxy must choose and forward the “best” response
from those it has seen so far.

The following processing MUST be performed on each
response that is forwarded. It is likely that more than one
response to each request will be forwarded: at least each
provisional and one final response:

o Aggregate authorization header field values if
necessary

o Optionally rewrite Record-Route header field values

o Forward the response

o Generate any necessary CANCEL requests

4. [Removing Via Header]

If no Via header field values remain in the response, the
response was meant for this element and MUST NOT be
forwarded.

PJSIP Requirements

This will happen, for instance, when the element generates
CANCEL requests

5. If the proxy chooses to recurse on any contacts in a 3xx
response by adding them to the target set, it MUST remove
them from the response before adding the response to the
response context. However, a proxy SHOULD NOT recurse to
a non-SIPS URI if the Request-URI of the original request was
a SIPS URI. If the proxy recurses on all of the contacts in a
3xx response, the proxy SHOULD NOT add the resulting
contactless response to the response context.

6. Removing the contact before adding the response to the
response context prevents the next element upstream from
retrying a location this proxy has already attempted.

7. If a proxy receives a 416 (Unsupported URI Scheme)
response to a request whose Request-URI scheme was not
SIP, but the scheme in the original received request was SIP
or SIPS (that is, the proxy changed the scheme from SIP or
SIPS to something else when it proxied a request), the proxy
SHOULD add a new URI to the target set. This URI SHOULD
be a SIP URI version of the non-SIP URI that was just tried.

As with a 3xx response, if a proxy “recurses” on the 416 by
trying a SIP or SIPS URI instead, the 416 response SHOULD
NOT be added to the response context.

8. Until a final response has been sent on the server
transaction, the following responses MUST be forwarded
immediately:

o Any provisional response other than 100 (Trying)

o Any 2xx response

9. If a 6xx response is received, it is not immediately forwarded,
but the stateful proxy SHOULD cancel all client pending
transactions as described in Section 10, and it MUST NOT
create any new branches in this context.

10. Under the new rules, upon receiving a 6xx, a proxy will issue
a CANCEL request, which will generally result in 487
responses from all outstanding client transactions, and then
at that point the 6xx is forwarded upstream.

11. After a final response has been sent on the server
transaction, the following responses MUST be forwarded
immediately:

o Any 2xx response to an INVITE request

12. A stateful proxy MUST NOT immediately forward any other
responses. In particular, a stateful proxy MUST NOT forward
any 100 (Trying) response. Those responses that are
candidates for forwarding later as the “best” response have
been gathered as described in step “Add Response to
Context”.

PJSIP Requirements

13. Any response chosen for immediate forwarding MUST be
processed as described in steps “Aggregate Authorization
Header Field Values” through “Record-Route”.

14. This step, combined with the next, ensures that a stateful
proxy will forward exactly one final response to a non-INVITE
request, and either exactly one non-2xx response or one or
more 2xx responses to an INVITE request.

15. [Choosing Best Response]

The proxy MUST forward a response from the responses
stored in the response context. It MUST choose from the 6xx
class responses if any exist in the context. If no 6xx class
responses are present, the proxy SHOULD choose from the
lowest response class stored in the response context. The
proxy MAY select any response within that chosen class. The
proxy SHOULD give preference to responses that provide
information affecting resubmission of this request, such as
401, 407, 415, 420, and 484 if the 4xx class is chosen.

16. [503 Response]

A proxy which receives a 503 (Service Unavailable) response
SHOULD NOT forward it upstream unless it can determine
that any subsequent requests it might proxy will also
generate a 503. In other words, forwarding a 503 means that
the proxy knows it cannot service any requests, not just the
one for the Request-URI in the request which generated the
503. If the only response that was received is a 503, the
proxy SHOULD generate a 500 response and forward that
upstream.

The forwarded response MUST be processed as described in
steps “Aggregate Authorization Header Field Values” through
“Record-Route”.

[Ref: RFC 3261 Section 16.7]

5.6 Handling Timer C

Item Case Description Status

1. If timer C should fire, the proxy MUST either reset the timer
with any value it chooses, or terminate the client transaction.
If the client transaction has received a provisional response,
the proxy MUST generate a CANCEL request matching that
transaction. If the client transaction has not received a
provisional response, the proxy MUST behave as if the
transaction received a 408 (Request Timeout) response.

PJSIP Requirements

5.7 Transport Error

Item Case Description Status

1. If the transport layer notifies a proxy of an error when it tries
to forward a request , the proxy MUST behave as if the
forwarded request received a 503 (Service Unavailable)
response. If the proxy is notified of an error when forwarding
a response, it drops the response. The proxy SHOULD NOT
cancel any outstanding client transactions associated with
this response context due to this notification.

[Ref: RFC 3261 Section 16.9]

5.8 Processing CANCEL

Item Case Description Status

1. [Cancel in General]

A stateful proxy MAY generate CANCEL requests for pending
INVITE client transactions based on the period specified in
the INVITE’s Expires header field elapsing. However, this is
generally unnecessary since the endpoints involved will take
care of signaling the end of the transaction.

2. [Receiving CANCEL with no Context]

If the proxy couldn't find response context for an incoming
CANCEL request, the element does not have any knowledge
of the request to apply the CANCEL to. It MUST statelessly
forward the CANCEL request (it may have statelessly
forwarded the associated request previously).

[Ref: RFC 3261 Section 16.10]

5.9 Stateless Proxy

Item Case Description Status

1. MUST NOT generate its own 100 (Trying) or any other
provisional response.

2. A stateless proxy MUST validate a request.

3. [Choosing Target]

A stateless proxy MUST choose one and only one target from
the target set. This choice MUST only rely on fields in the
message and time-invariant properties of the server. In
particular, a retransmitted request MUST be forwarded to the
same destination each time it is processed. Furthermore,
CANCEL and non-Routed ACK requests MUST generate the
same choice as their associated INVITE.

4. [Branch parameter]

The requirement for unique branch IDs across space and time
applies to stateless proxies as well. For a stateless proxy, the

PJSIP Requirements

branch parameter MUST be computed as a combinatory
function of message parameters which are invariant on
retransmission.

5. [Calculating Branch Parameter]

The following procedure is RECOMMENDED .The proxy
examines the branch ID in the topmost Via header field of the
received request. If it begins with the magic cookie, the first
component of the branch ID of the outgoing request is
computed as a hash of the received branch ID. Otherwise,
the first component of the branch ID is computed as a hash
of the topmost Via, the tag in the To header field, the tag in
the From header field, the Call-ID header field, the CSeq
number (but not method), and the Request-URIfrom the
received request.

6. [Other Transformations]

All other message transformations specified in Section 16.6
MUST result in the same transformation of a retransmitted
request. In particular, if the proxy inserts a Record-Route
value or pushes URIs into the Route header field, it MUST
place the same values in retransmissions of the request.

7. [Forwarding Request]

A stateless proxy determines where to forward the request.
The request is sent directly to the transport layer instead of
through a client transaction.

8. [CANCEL Request]

Stateless proxies MUST NOT perform special processing for
CANCEL requests. They are processed by the above rules as
any other requests. In particular, a stateless proxy applies
the same Route header field processing to CANCEL requests
that it applies to any other request.

9. [Response Processing]

When a response arrives at a stateless proxy, the proxy
MUST inspect the sent-by value in the first (topmost) Via
header field value. If that address matches the proxy, (it
equals a value this proxy has inserted into previous requests)
the proxy MUST remove that header field value from the
response and forward the result to the location indicated in
the next Via header field value.

If the address does not match the proxy, the message MUST
be silently discarded.

[Ref: RFC 3261 Section 16.11]

5.10Summary of Proxy Route Processing

Item Case Description Status

PJSIP Requirements

1. In the absence of local policy to the contrary, the processing
a proxy performs on a request containing a Route header
field can be summarized in the following steps.

o The proxy will inspect the Request-URI. If it indicates
a resource owned by this proxy, the proxy will replace
it with the results of running a location service.
Otherwise, the proxy will not change the Request-URI.

o The proxy will inspect the URI in the topmost Route
header field value. If it indicates this proxy, the proxy
removes it from the Route header field (this route
node has been reached).

o The proxy will forward the request to the resource
indicated by the URI in the topmost Route header field
value or in the Request-URI if no Route header field is
present. The proxy determines the address, port and
transport to use when forwarding the request by
applying the procedures in [RFC 3263] to that URI.

o If no strict-routing elements are encountered on the
path of the request, the Request-URI will always
indicate the target of the request.

PJSIP Requirements

Chapter 6:Extensions
References:

o RFC 3261

o draft-ietf-sip-guidelines-05

6.1 Modeling SIP Extensions

Characteristics of SIP extensions:

o Extensions may define new methods. Extensions that define new methods do
not need to use Require header, because the support of such extensions can
be indicated by observing Allow header field in OPTIONS, INVITE (and its
responses), 405 (Method Not Allowed) response, etc.

o Extensions may require proxy to insert header fields or header field
parameters in the request while it traverses across network, or to require UAS
to insert header fields or header field parameters in the response to the
request. This capability is indicated by Supported, Require, or Proxy-
Require header field.

o Extensions may define new body types. Message bodies MUST be understood
by user agent in order to process a request. Content-Disposition is used to
indicate that the message body is optional. User agents communicate what
types of message bodies they support in the Accept header field, which is
RECOMMENDED to be placed in requests that establish dialog.

For the purpose of design, we classify extensions into two types based of their
interaction type:

o Extensions that work inside the context of a dialog (most of extensions),

o Extensions that work outside the context of a dialog (e.g. message signing,
message compression).

Note that the same extension may specify that it supports both types of interaction.

In PJSIP, a SIP extension is characterized by:

o A unique name in PJSIP extension namespace. This unique name will be
specified in Supported, Require, and/or Proxy-Require header field value if the
extension specifies that it needs to be listed there.

o At which layer does it operate (core, or UA, or both)

o Dependencies to other extensions.

o What new methods it defines,

o For each individual new method, whether the method is a target refresh for a
dialog.

o What new body types (MIME type) it defines,

PJSIP Requirements

o Whether it wants to be listed in Supported header fields.

o Whether the proxy needs to understand this extension (thus a token will be
listed in Proxy-Require header if this extension is used).

6.2 Generic Design Requirements for SIP Extensions

Item Case Description Status

1. Implement extension characterization as described above.

2. Core MUST put appropriate header fields to indicate the
extensions it supports during transmission of appropriate
requests and responses.

3. If a UAS does not understand an option-tag listed in a
Require header field, it MUST respond by generating a
response with status code 420 (Bad Extension). The UAS
MUST add an Unsupported header field, and list in it those
options it does not understand amongst those in the Require
header field of the request.

4. Require and Proxy-Require MUST NOT be used in a SIP
CANCEL request, or in an ACK request sent for a non-2xx
response. These header fields MUST be ignored if they are
present in these requests.

5. [Message Processing Content]

UAS MUST check if it understands the message body type
(Content-Type), the language (Content-Language), and
encoding (Content-Encoding). If it doesn’t understand any
of them, and the handling of the body is not optional (as
indicated by Content-Disposition), the UAS MUST reject the
request with 415 (Unsupported Media Type), listing the
appropriate header fields.

6. [Selecting extensions for dialog]

User/application MUST be able to select which extensions it
wants to use for both incoming and outgoing dialogs. This
selection MAY be represented as a profile.

For incoming requests, dialog determines what extensions
are to be used.

7. [UAS forcing extension to be used]

UAS MUST be able to indicate that processing of certain
requests require some extensions to be used, or otherwise a
421 (Extension Required) response will be sent.

8. UAS MUST list all the extensions being applied to the request
in the response message.

9. Extensions must be able to query that other extensions are
being used (particularly for the same dialog).

PJSIP Requirements

10. Extensions MAY modify dialog’s behavior:

o It may reject incoming message

o It may retransmit message (e.g. response in 100rel).

o It may suspend transmission of certain messages
(e.g. suspend 200 when there is outstanding PRACK in
100rel)

11. For extensions that work on dialogs, the design SHOULD
allow extensions to receive all request and response
messages for the dialog. Extensions that don’t understand a
particular message should ignore it.

12. User agent should also indicate the language that the user
prefers to use by listing the languages in Accept-Language
header.

13. Extension framework MUST allow extension to work on or
modify the whole message (e.g. digest auth-int, message
signing, compression, encryption, etc.).

6.3 100rel Extension (RFC 3262)

Reference:

o RFC 3262

6.3.1 UAS Behavior

Item Case Description Status

1. MUST NOT send 100 response reliably.

2. MUST NOT send any reliable provisional response if UAC
doesn’t specify 100rel in Supported header field.

3. MUST add Require header field in the provisional response
containing 100rel option tag, and add RSeq header.

4. Retransmits the reliable provisional response, until a
matching PRACK is received.

5. Keeps list of unacknowledged responses.

6. Answers PRACK with 481 if it doesn’t match any outstanding
provisional response.

7. MUST NOT send second reliable provisional response when
the first one has not completed. It is RECOMMENDED that the
UAS doesn’t send reliable provisional response when there is
outstanding one.

8. The UAS MAY send a final response to the initial request

PJSIP Requirements

before having received PRACKs for all unacknowledged
reliable provisional responses, unless the final response is
2xx and any of the unacknowledged reliable provisional
responses contained a session description. In that case, it
MUST NOT send a final response until those provisional
responses are acknowledged.

9. If the UAS does send a final response when reliable
responses are still unacknowledged, it SHOULD NOT continue
to retransmit the unacknowledged reliable provisional
responses, but it MUST be prepared to process PRACK
requests for those outstanding responses. A UAS MUST NOT
send new reliable provisional responses (as opposed to
retransmissions of unacknowledged ones) after sending a
final response to a request.

6.3.2 UAC Behavior

Item Case Description Status

1. The extension framework controls whether the dialog should
support or require reliable provisional response extension to
be used.

2. The receipt of provisional MUST establish the dialog if one is
not yet created.

3. MUST send PRACK request (within dialog) when reliable
provisional response is received.

4. SHOULD NOT retransmit PRACK when the retransmission of
reliable provisional response is received.

5. MUST drop reliable provisional response that is received out
of order (i.e. out of sequence RSeq header value).

6. MAY acknowledge reliable provisional response that is
received after the final response.

6.3.3 Offer/Answer Model

Item Case Description Status

1. The reliable provisional response extension CAN be used to
exchange session’s offer/answer description.

2. User agents MUST take care the offer/answer exchange so
that there is no unacknowledged offer when the session is
confirmed.

PJSIP Requirements

6.4 Alternative Network Address Types Extension (sip-anat-
usage, RFC 4092)

Abstract: Alternative Network Address Types (ANAT) extension provides
mechanism to offer callee with either Ipv4 or Ipv6 in the SDP. User
agents specify the support of this extension by putting option tag sdp-
anat in Supported or Require header field.

This extension will not change the processing of SIP messages, thus no specific
design requirement or consideration is required for this extension.

6.5 P-Asserted-Identity Private Extension (sip-asserted-
identity, RFC 3325)

Abstract: This RFC describes private extensions to the Session Initiation Protocol
(SIP) that enable a network of trusted SIP servers to assert the
identity of authenticated users, and the application of existing privacy
mechanisms to the identity problem.

This extension mostly changes the behavior of SIP proxies.

TODO: set requirements for processing by proxies.

6.6 Media Authorization Private Extension (sip-call-auth, RFC
3313)

Abstract: This RFC describes the need for Quality of Service (QoS) and media
authorization and defines a Session Initiation Protocol (SIP) extension
that can be used to integrate QoS admission control with call signaling
and help guard against denial of service attacks.

The processing of this extension will not change the behavior of SIP protocol, thus
does NOT need special requirements or considerations.

6.7 User Agent Capabilities Extension (sip-callee-caps, “pref”,
RFC 3840)

Abstract: RFC 3840 defines mechanisms by which a Session Initiation Protocol
(SIP) user agent can convey its capabilities and characteristics to
other user agents and to the registrar for its domain. This information
is conveyed as parameters of the Contact header field.

The implementation of this extension will be used by application and will not change
the behavior of the SIP stack.

6.8 Caller Preferences Extension (caller-prefs, RFC 3841)

Abstract: This document describes a set of extensions to the Session Initiation
Protocol (SIP) which allow a caller to express preferences about
request handling in servers. This extension works for the caller side of
sip-callee-caps/RFC 3840, and it will be treated similarly.

PJSIP Requirements

This extension changes the way a request is processed by proxies.

TODO: requirements for proxies.

6.9 INFO Method Extension (RFC 2976)

Abstract: This extension adds the INFO method to the SIP protocol. The intent
of the INFO method is to allow for the carrying of session related
control information that is generated during a session. One example
of such session control information is ISUP and ISDN signaling
messages used to control telephony call services.

This does not even need an extension in PJSIP. Application can directly use any
method without needed a special extension.

PJSIP Requirements

Chapter 7:Message Body Handling

Multipart/mixed

Message/sipfrag

PJSIP Requirements

Chapter 8:Message Integrity and Encryption
References:

o RFC 3261 (SIP), Section 23: S/MIME

o RFC 3893: Authenticated Identity Body (AIB) Format

PJSIP Requirements

Chapter 9:Message Compression
References:

o RFC 3320: Signaling Compression (SigComp)

o RFC 3486: Compressing the Session Initiation Protocol (SIP)

PJSIP Requirements

	Table of Contents
	Chapter 1:General
	1.1Objectives
	1.2Code Convention

	Chapter 2:Core Functions
	2.1General Core Design Requirements
	2.2Message Components
	2.2.1General
	2.2.2URI Design Requirements
	2.2.3URI Comparison Rules
	2.2.4Methods, Design Requirements
	2.2.5Header Fields
	2.2.6Parser
	2.2.7Message Bodies
	2.2.8UAC Generating Requests
	2.2.9UAS Generating Responses

	2.3Endpoint
	2.4Transactions
	2.4.1Design Requirements
	2.4.2Client Transactions
	2.4.3Generating ACK (for 3xx-6xx Responses)
	2.4.4Server Transactions

	2.5Transports
	2.5.1Design Requirements
	2.5.2Computing Destination of the Request
	2.5.3Behavior

	2.6Resolver
	2.7Digest Authentication
	2.7.1Basic Case
	2.7.2Next Requests
	2.7.3Multiple Challenges
	2.7.4Open Issues

	Chapter 3:User Agent/Dialog Layer
	3.1Design Requirements
	3.2UAC Behavior
	3.3UAS Behavior
	3.4Application Consideration

	Chapter 4:Redirection
	Chapter 5:Proxy Behavior
	5.1Request Validation
	5.2Route Processing
	5.3Calculating Request Target
	5.4Request Forwarding
	5.5Processing Response
	5.6Handling Timer C
	5.7Transport Error
	5.8Processing CANCEL
	5.9Stateless Proxy
	5.10Summary of Proxy Route Processing

	Chapter 6:Extensions
	6.1Modeling SIP Extensions
	6.2Generic Design Requirements for SIP Extensions
	6.3100rel Extension (RFC 3262)
	6.3.1UAS Behavior
	6.3.2UAC Behavior
	6.3.3Offer/Answer Model

	6.4Alternative Network Address Types Extension (sip-anat-usage, RFC 4092)
	6.5P-Asserted-Identity Private Extension (sip-asserted-identity, RFC 3325)
	6.6Media Authorization Private Extension (sip-call-auth, RFC 3313)
	6.7User Agent Capabilities Extension (sip-callee-caps, “pref”, RFC 3840)
	6.8Caller Preferences Extension (caller-prefs, RFC 3841)
	6.9INFO Method Extension (RFC 2976)

	Chapter 7:Message Body Handling
	Chapter 8:Message Integrity and Encryption
	Chapter 9:Message Compression

